Энергия солнечной радиации

Энергия солнечной радиации

Со́лнечная радиа́ция — электромагнитное и корпускулярное излучение Солнца. Следует отметить, что данный термин является калькой с англ. Solar radiation («Солнечное излучение»), и в данном случае не означает радиацию в «бытовом» смысле этого слова (ионизирующее излучение).

Солнечная радиация измеряется мощностью переносимой ею энергии на единицу площади поверхности (ватт/м 2 ) (см. Солнечная постоянная). В целом, Земля получает от Солнца менее 0,5×10 −9 (одной двухмиллиардной) от энергии его излучения.

Электромагнитная составляющая солнечной радиации распространяется со скоростью света и проникает в земную атмосферу. До земной поверхности солнечная радиация доходит в виде прямых и рассеянных лучей. Спектральный диапазон электромагнитного излучения Солнца очень широк — от радиоволн (Солнечные радио всплески) [1] до рентгеновских лучей — однако максимум его интенсивности приходится на видимую (жёлто-зелёную) часть спектра.

Существует также корпускулярная часть солнечной радиации, состоящая преимущественно из протонов, движущихся от Солнца со скоростями 300—1500 км/с (см. Солнечный ветер). Во время солнечных вспышек образуются также частицы больших энергий (в основном протоны и электроны), образующие солнечную компоненту космических лучей.

Энергетический вклад корпускулярной составляющей солнечной радиации в её общую интенсивность невелик по сравнению с электромагнитной. Подавляющая доля частиц задерживается магнитным полем Земли, либо поглощается верхними слоями земной атмосферы, поэтому в ряде приложений термин «солнечная радиация» используют в узком смысле, имея в виду только её электромагнитную часть.

Содержание

Влияние солнечной радиации на климат [ править | править код ]

Солнечная радиация — главный источник энергии для всех физико-географических процессов, происходящих на земной поверхности и в атмосфере.

Солнечной радиации подвергается дневная сторона поверхности Земли. В частности, солнечная радиация очень сильна вблизи полюсов, в период полярных дней, когда Солнце круглосуточно находится над горизонтом. Однако, во время полярной ночи, в тех же местах Солнце вообще не поднимается над горизонтом. Солнечная радиация полностью не блокируется облачностью, и частично достигает поверхности Земли при любой погоде в дневное время за счёт прозрачности облаков для тепловой компоненты спектра солнечной радиации. Для измерения солнечной радиации служат пиранометры и пиргелиометры.

Сумма радиации, полученной небесным телом, зависит от расстояния между планетой и звездой — при увеличении расстояния вдвое количество радиации, поступающее от звезды на планету уменьшается вчетверо (пропорционально квадрату расстояния между планетой и звездой). Таким образом, даже небольшие изменения расстояния между планетой и звездой (вызваны наличием эксцентриситета орбиты) приводят к значительному изменению количества поступающей на планету радиации звезды. Эксцентриситет земной орбиты не является постоянным — с течением тысячелетий орбита меняется, периодически образуя практически идеальный круг, иногда же эксцентриситет достигает 5 % (в настоящее время он равен 1,67 %), то есть в перигелии Земля получает в настоящее время в 1,033 больше солнечной радиации, чем в афелии, а при наибольшем эксцентриситете — более чем в 1,1 раза. Гораздо более сильно количество поступающей солнечной радиации зависит от смены времён года — в настоящее время мощность солнечной радиации, поступающей на Землю, остаётся практически постоянной, но на широтах 65 С. Ш. (широта северных городов России, Канады) летом мощность солнечной радиации, отнесённая к единице поверхности, более чем на 25 % больше, чем зимой. Это происходит из-за того, что ось вращения Земли по отношению к плоскости орбиты наклонена под углом 23,3°. Избыток радиации летом и недостаток зимой взаимно компенсируются (если не учитывать эксцентриситет земной орбиты), но, с приближением места наблюдения к полюсам, разрыв между зимой и летом становится всё более существенным. Так, на экваторе разницы между зимой и летом практически нет. За Полярным кругом же, прямые лучи Солнца не достигают поверхности в течение полугода. Таким образом формируются особенности климата различных регионов Земли. Кроме того, периодические изменения эксцентриситета орбиты Земли могут приводить к возникновению различных геологических эпох: к примеру, ледникового периода.

Читайте также:  Болезнь боткина это гепатит

Таблицы [ править | править код ]

Средняя дневная сумма солнечной радиации, кВтч/м² [3]
Лонгйир Мурманск Архангельск Якутск Санкт-Петербург Москва Новосибирск Берлин Улан-Удэ Лондон Хабаровск Ростов-на-Дону Сочи Находка Нью-Йорк Мадрид Асуан
1,67 2,19 2,29 2,96 2,60 2,72 2,91 2,74 3,47 2,73 3,69 3,45 4,00 3,99 3,83 4,57 6,34
Средняя дневная сумма солнечной радиации в декабре, кВтч/м² [3]
Лонгйир Мурманск Архангельск Якутск Санкт-Петербург Москва Новосибирск Берлин Улан-Удэ Лондон Хабаровск Ростов-на-Дону Сочи Находка Нью-Йорк Мадрид Асуан
0,05 0,16 0,17 0,33 0,62 0,61 0,97 0,60 1,29 1,00 1,25 2,04 1,68 1,64 4,30
Средняя дневная сумма солнечной радиации в июне, кВтч/м² [3]
Лонгйир Мурманск Архангельск Якутск Санкт-Петербург Москва Новосибирск Берлин Улан-Удэ Лондон Хабаровск Ростов-на-Дону Сочи Находка Нью-Йорк Мадрид Асуан
4,99 5,14 5,51 6,19 5,78 5,56 5,48 4,80 5,72 4,84 5,94 5,76 6,75 5,12 5,84 7,41 8,00
Отражение солнечной радиации от поверхности Земли
Снег чистый Трава зелёная Лес лиственный Почва Вода
71 % 20-25 % 15-20 % 10-30 % 9 %
Источник: [4]

Ссылки [ править | править код ]

Солнечная радиация (неопр.) . Географический словарь. Экологический центр «Экосистема». Дата обращения 22 мая 2011. Архивировано 14 февраля 2012 года.

Благодаря сочетанию сверхвысоких давлений и температур в центральной области Солнца происходят ядерные реакции, при которых выделяется огромное количество энергии. Среднее количество вырабатываемой при ядерных реакциях энергии в расчете на грамм вещества в секунду составляет 1,92 эрга. Часть этой энергии идет на поддержание в центральной области сверхвысоких температур, необходимых для ядерных реакций, а остальная излучается Солнцем в межпланетное пространство. Мощность общего излучения Солнца 3,83?10 26 Вт, из которых на Землю попадает около 2?10 17 Вт, т. е. приблизительно одна двухмиллиардная часть. С 1 см 2 поверхности Солнца в 1 сек. Излучается энергии 6000 Вт, или 6?10 10 эрг/см 2 сек. Излучаемый Солнцем поток энергии уносит из него ежегодно 1,4?10 13 т вещества. И хотя эта величина, по нашим земным понятиям, огромна, по сравнению с массой светила она ничтожна: потребуется невероятно огромное время, чтобы Солнце израсходовало на излучение энергии все свое вещество и таким образом перестало бы существовать. Но до такого состояния Солнца далеко — приблизительно 10 млрд. лет.

А. Б. Северный дает такое интересное сопоставление огромной мощности излучаемой Солнцем энергии с эффектом ее использования: «Ежесекундно теряемой Солнцем лучистой энергии достаточно, чтобы в течение часа растопить и довести до кипения 2,5 биллиона км 3 льда, т. е. растопить слой льда вокруг Земли толщиной более 1000 км».

Исходящее из центральной области Солнца излучение по мере движения к внешним сферам перестраивается из коротковолнового в длинноволновое. Если в центре обычны Х-лучи, гамма- излучение, а затем рентгеновское, то в средних слоях солнечного шара преобладают ультрафиолетовые лучи, а в излучающей поверхности Солнца (в фотосфере) они оказываются трансформированными уже в волны светового диапазона излучения. В соответствии с диапазоном длин излучаемых поверхностью Солнца (фотосферой) электромагнитных волн ее температура принимается равной 5785 К или 5600 К.

Солнце генерирует и испускает в космическое пространство два основных потока энергии — электромагнитное излучение, или солнечную радиацию, и корпускулярное излучение, или солнечный ветер. Энергетические потоки обладают высокой мощностью в пределах близко расположенных от светила космических тел. Наоборот, до далеких от Солнца тел потоки энергии доходят сильно ослабленными, а потому их значение в энергетическом балансе планет становится меньшим. Тем не менее тепловое поле поверхности всех планет Солнечной системы создается почти исключительно солнечной радиацией, так как приход эндогенной энергии планет к поверхности крайне незначителен и многими природоведами применительно к Земле игнорируется. Вот почему для планет внутренней группы — Меркурия, Венеры, Земли и Марса — значение солнечной энергии особенно велико. Для сравнения природных условий на этих планетах необходимо ознакомится с мощностью потоков солнечной энергии и особенностью ее поглощения.

Читайте также:  Изопринозин от плоских бородавок

На планеты солнечная энергия поступает в виде потоков электромагнитного излучения (солнечной радиации) и корпускулярного излучения (солнечного ветра).

Значение для природной обстановки на планетах корпускулярного излучения достаточно не выяснено, что побуждает нас не входить в его рассмотрение, а роль солнечной энергии свести к воздействию солнечной радиации на природу планет.

В ходе наблюдений ученые выяснили, что Солнце — мощный источник радиоизлучения. В межпланетное пространство проникают радиоволны, которые излучает хромосфера (сантиметровые волны) и корона (дециметровые и метровые волны).

Радиоизлучение Солнца имеет две составляющие — постоянную и переменную (всплески, «шумовые бури»). Во время сильных солнечных вспышек радиоизлучение Солнца возрастает в тысячи и даже миллионы раз по сравнению с радиоизлучением спокойного Солнца. Это радиоизлучение имеет нетепловую природу.

Согласно современной квантовой теории, излучение электромагнитной энергии Солнца, в том числе и света, происходит непрерывно, а порциями — квантами. Каждый квант несет определенную энергию. Она измеряется обычно электрон-вольтами (эВ). Электрон-вольт — это количество энергии, которая приобретает свободный электрон, ускоренный электрическим полем с разностью потенциалов в 1 вольт (В). Электрон-вольт равен 1,6?10 -12 эрг. Солнечные кванты могут изменить самую различную энергию — от миллионов электрон-вольт до миллионных долей электрон-вольта. Иначе говоря, кванты электромагнитного излучения могут различаться по энергии в миллиарды раз!

Электромагнитное излучение имеет волновой характер. Каждому кванту с определенной энергией свойственно волна излучения определенной длины. Электромагнитное излучение можно характеризовать не только в квантах разной мощности, но в соответствующих им длинах волн. Они измеряются в разных единицах длины: короткие волны квантов — ангстремами (A), что составляет 1/100 млн. часть сантиметра (10 -8 ). Например, кванту с энергией в 1эВ соответствует длина волны ?=12400 A. Более длинные волны измеряют последовательно — миллиметрами, сантиметрами, дециметрами, метрами и километрами. Имеются и промежуточные единицы — микрометры (мкм)=10 4 A.

Совокупность всех видов квантов, расположенных последовательно с возрастанием их энергии, называется спектром электромагнитного излучения Солнца. Соответственно спектр солнечной радиации можно выразить через волны различной длины. Непрерывный спектр электромагнитного излучения, как показано в таблице 2, условно разделен по длине волн на диапазоны: гамма-излучение, рентгеновское, ультрафиолетовое; все это ультракоротковолновая радиация, характеризующаяся высокими значениями энергии и невосприятием ее человеческим глазом. Далее следует оптический, или световой, диапазон. За ним опять идут два невидимых диапазона электромагнитных волн — инфракрасный и радиоволн.

Дифференциация потока солнечной радиации по длине волн и энергии фотонов излучения (по М. М. Ермолаеву, 1969)

Интенсивность солнечного света, которая достигает земли меняется в зависимости от времени суток, года, местоположения и погодных условий. Общее количество энергии, подсчитанное за день или за год, называется иррадиацией (или еще по-другому «приход солнечной радиации») и показывает, насколько мощным было солнечное излучение. Иррадиация измеряется в Вт*ч/м² в день, или другой период.

Читайте также:  Если много железа в крови

Интенсивность солнечного излучения в свободном пространстве на удалении, равном среднему расстоянию между Землей и Солнцем, называется солнечной постоянной. Ее величина — 1353 Вт/м². При прохождении через атмосферу солнечный свет ослабляется в основном из-за поглощения инфракрасного излучения парами воды, ультрафиолетового излучения — озоном и рассеяния излучения частицами атмосферной пыли и аэрозолями. Показатель атмосферного влияния на интенсивность солнечного излучения, доходящего до земной поверхности, называется «воздушной массой» (АМ). АМ определяется как секанс угла между Солнцем и зенитом.

На рис.1 показано спектральное распределение интенсивности солнечного излучения в различных условиях. Верхняя кривая (АМ0) соответствует солнечному спектру за пределами земной атмосферы (например, на борту космического корабля), т.е. при нулевой воздушной массе. Она аппроксимируется распределением интенсивности излучения абсолютно черного тела при температуре 5800 К. Кривые АМ1 и АМ2 иллюстрируют спектральное распределение солнечного излучения на поверхности Земли, когда Солнце в зените и при угле между Солнцем и зенитом 60°, соответственно. При этом полная мощность излучения — соответственно порядка 925 и 691 Вт/м². Средняя интенсивность излучения на Земле примерно совпадает с интенсивностью излучения при АМ=1,5 (Солнце — под углом 45° к горизонту) [1].

Около поверхности Земли можно принять среднюю величину интенсивности солнечной радиации 635 Вт/м². В очень ясный солнечный день эта величина колеблется от 950 Вт/м² до 1220 Вт/м². Среднее значение — примерно 1000 Вт/м² [860 ккал/(м²ч)]. Пример: Интенсивность полного излучения в Цюрихе (47°30′ с. ш., 400 м над уровнем моря) на поверхности, перпендикулярной излучению:1 мая 12 ч 00 мин 1080 Вт/м²;21 декабря 12 ч 00 мин 930 Вт/м².

Для упрощения вычисления по приходу солнечной энергии, его обычно выражают в часах солнечного сияния с интенсивностью 1000 Вт/м². Т.е. 1 час соответствует приходу солнечной радиации в 1000 Вт*ч/м². Это примерно соответствует периоду, когда солнце светит летом в середине солнечного безоблачного дня на поверхность, перпендикулярную солнечным лучам.

Приход солнечной радиации меняется в течение дня и от места к месту, особенно в горных районах. Иррадиация меняется в среднем от 1000 кВт*ч/м² в год для северо-европейских стран, до 2000-2500 кВт*ч/м² в год для пустынь. Погодные условия и склонение солнца (которое зависит от широты местности), также приводит к различиям в приходе солнечной радиации.

В России, вопреки распространённому мнению, очень много мест, где выгодно преобразовывать солнечную энергию в электроэнергию при помощи солнечных батарей. Ниже приведена карта ресурсов солнечной энергии в России. Как видим, на большей части России можно успешно использовать солнечные батареи в сезонном режиме, а в районах с числом часов солнечного сияния более 2000 часов/год — круглый год. Естественно, в зимний период выработка энергии солнечными панелями существенно снижается, но все равно стоимость электроэнергии от солнечной электростанции остается существенно ниже, чем от дизельного или бензинового генератора.

Особенно выгодно применение солнечных батарей там, где нет централизованных электрических сетей и энергообеспечение обеспечивается за счет дизель-генераторов. А таких районов в России очень много.

Более того, даже там, где сети есть, использование работающих параллельно с сетью солнечных батарей позволяет значительно снизить расходы на электроэнергию. При существующей тенденции на повышении тарифов естественных энергетических монополий России, установки солнечных батарей становится умным вложением денег.

Ресурсы солнечной энергии России

Ссылка на основную публикацию
Adblock detector