Электромагнитное поле и электромагнитная волна

Электромагнитное поле и электромагнитная волна

Английский учёный Максвелл теоретически предсказал существование электромагнитного поля. Он считал, что между полем магнитным и электрическим существует связь. Переменное магнитное поле порождает электрическое поле и наоборот. В результате в пространстве поле распространятся в виде электромагнитной волны. Электромагнитная волна – это электромагнитные колебания, распространяющиеся в пространстве с течением времени. Немецкий физик Герц в 1888г. впервые получил электромагнитные волны.

Электромагнитные волны обладают следующими свойствами:

1. распространяются прямолинейно

2. поглощаются диэлектриками

3. отражаются металлами

5. распространяются со скоростью С=3•10 8

6. электромагнитная волна – поперечная волна.

По своим физическим свойствам световые волны аналогичны электромагнитным волнам.По современным представлениям свет имеет двойственную структуру: при излучении и поглощении – это поток частиц, а при распространении – это электромагнитная волна. Световые волны обладают теми же свойствами, что и электромагнитные волны: отражение, преломление, поглощение, поляризация, интерференция, дифракция. Поляризация доказывает, что свет – это поперечная электромагнитная волна.

Интерференция – это сложение волн, в результате которого волны усиливают или ослабляют друг друга по амплитуде.

Дифракция – это огибание волнами препятствий, сравнимых с длиной волны (небольших).

На границе двух сред световая волна меняет своё направление – преломляется. Скорость света равна С=3•10 8 м/с. Частота света ν = 10 14 Гц. Длина волны λ = 4•10 −9 -7•10 −9 м.

Видимый свет – это один из видов излучения на шкале электромагнитных излучений. Помимо видимого света есть другие виды излучений: низкочастотные колебания, радиоволны, инфракрасное излучение, ультрафиолетовое излучение, рентгеновское излучение и гамма излучение.

Низкочастотное излучение возникает в диапазоне частот о ν = 0 до 10 4 Гц. Этому излучению соответствует длина волны λ = 10 4 до ¥ м. Излучением таких, сравнительно малых частот, можно пренебречь. Источником низкочастотного излучения являются генераторы переменного тока. Применяются при плавке и закалке металлов.

Радиоволны занимают диапазон частот ν = 10 4 -10 13 Гц. Им соответствует длина волны λ = 10 4 -10 −4 м. Источником радиоволн, так же как и низкочастотного излучения является переменный ток. Большая частота радиоволн приводит к заметному излучению радиоволн в пространство. Это позволяет использовать их для передачи информации на различные расстояния (радиовещание, телевидение, радиосвязь, радиолокация).

Инфракрасное излучение занимают диапазон частот ν = 10 13 — 10 14 Гц. Им соответствует длина волны λ = 10 −4 -10 −6 м. Инфракрасное излучение было открыто в 1800 году астрономом Гершелем. Источником инфракрасного излучения является излучение молекул и атомов при тепловых и электрических воздействиях. Источники инфракрасного излучения – Солнце, любое нагретое тело. Инфракрасное излучение используют для сушки древесины, пищевых продуктов и различных лакокрасочных покрытий (инфракрасный нагрев), для сигнализации при плохой видимости, дает возможность применять оптические приборы, позволяющие видеть в темноте, а также при дистанционном управлении. Инфракрасные лучи используются для наведения на цель снарядов и ракет, для обнаружения замаскированного противника. Эти лучи позволяют определить различие температур отдельных участков поверхности планет, особенности строения молекул вещества (спектральный анализ). Инфракрасная фотография применяется в биологии при изучении болезней растений, в медицине при диагностике кожных и сосудистых заболеваний, в криминалистике при обнаружении подделок.

Ультрафиолетовое излучение— не видимое глазом электромагнитное излучение, n=10 14 -10 16 Гц, λ = 10 −7 -10 −9 м. Ультрафиолетовое излучение было открыто в 1801 году немецким ученым Риттером. Источник ультрафиолетового излучения — валентные электроны атомов и молекул, также ускорено движущиеся свободные заряды.

В малых дозах ультрафиолетовое излучение оказывает благотворное, оздоровительное влияние на человека, активизируя синтез витамина D в организме, а также вызывая загар. Большая доза ультрафиолетового излучения может вызвать ожог кожи и раковые новообразования. Ультрафиолетовое излучение оказывает также бактерицидное действие: под действие этого излучения гибнут болезнетворные бактерии.

Ультрафиолетовое излучение применяется в люминесцентных лампах, в криминалистике (по снимкам обнаруживают подделки документов), в искусствоведении (с помощью ультрафиолетовых лучей можно обнаружить на картинах не видимые глазом следы реставрации). Практически не пропускает ультрафиолетовое излучение стекло.

Рентгеновское излучение – это невидимое глазом излучение. n=10 16 -10 19 Гц, λ = 10 −9 -10 −11 м. Рентгеновское излучение было открыто в 1895 году немецким физиком Рентгеном. Наиболее распространенным источником рентгеновского излучения является рентгеновская трубка. Естественными источниками рентгеновского излучения является Солнце и др. космические объекты.

Благодаря высокой проникающей способности рентгеновское излучение применяется в рентгеноструктурном анализе (исследовании структуры кристаллической решетки), при изучении структуры молекул, в медицине (рентгеновские снимки, флюорография, лечение раковых заболеваний), в дефектоскопии (обнаружение дефектов в отливках, рельсах), в искусствоведении (обнаружение старинной живописи, скрытой под слоем поздней росписи), в астрономии(при изучении рентгеновских источников), криминалистике. Большая доза рентгеновского излучения приводит к ожогам и изменению структуры крови человека.

Гамма излучение — коротковолновое электромагнитное излучение. n=10 19 -10 20 Гц, λ = 10 −11 -10 −13 м. Гамма излучение было открыто французским ученым Полем Вилларом в 1900 году. Гамма излучение связано с ядерными процессами, явлениями радиоактивного распада. Бывает трёх видов: альфа, бета, гамма излучения. Используются при исследовании ядерных процессов, в дефектоскопии. Гамма излучение отрицательно воздействует на человека.

Читайте также:  Лечение грибка на руках препараты

БИЛЕТ № 20

Опыты Резерфорда по рассеянию α — частиц. Ядерная модель атома. Квантовые постулаты Бора. Лазеры.

Понятие об атоме как о наименьшей неделимой части материи было впервые сформулировано древнегреческими философами. Однако в конце XIX — начале XX века физиками были открыты частицы, из которых состоит атом, и стало ясно, что атом в действительности не является «неделимым». Простейшую модель атома предложил английский учёный Томсон. Томсон предположил, что атомы состоят из положительно заряженной сферы, в которую вкраплены электроны. Эта модель атома получила среди ученых прозвище "кекс с изюмом", (где "изюминки" — это электроны), а положительный заряд равномерно распределён по всему объёму. В 1911г. английский учёный Резерфорд провёл опыты по зондированию атомов α -частицами (ядра атомов гелия).

Если на путиα -частиц не было фольги, то все частицы оказывались в центре экрана. Если на путиα -частиц поставить тонкую золотую фольгу, то подавляющая часть α — частиц проходила сквозь фольгу практически без отклонения или с отклонением на малые углы, но небольшая часть α -частиц отклонялась на значительные углы, достигающие почти 180°. Резерфорд пришёл к выводу, что полученное в эксперименте распределение α -частиц возможно только в том случае, если внутри атома имеется чрезвычайно сильное электрическое поле, которое создаётся положительным зарядом, связанным с большой массой и сконцентрированным в очень малом объёме. И он решил,что атом устроен наподобие планетной системы: в центре находится положительно заряженное ядро, в котором сосредоточена почти вся масса атома; и отрицательные электроны, обращающиеся вокруг ядра по замкнутым орбитам.Между ядром и электронами – пустота. Частицы, которые отклонились на большие углы, попали в ядро. Частицы, которые не изменили траекторию движения, пролетели в пустоте между ядром и электроном. В результате опытов были проведены измерения размеров ядра: 10 –13 -10 –14 м (т. е. ядро в 10000 раз меньше атома).Электроны, вращаясь вокруг ядра, теряют энергию на излучение и должны упасть на ядро. Но атом устойчив! В 1913г датский физик Бор выдвинул два постулата (утверждения):

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

См. также: Портал:Физика

Электромагни́тные во́лны / электромагни́тное излуче́ние — распространяющееся в пространстве возмущение (изменение состояния) электромагнитного поля. [1]

Среди электромагнитных полей, порождённых электрическими зарядами и их движением, принято относить к излучению ту часть переменных электромагнитных полей, которая способна распространяться наиболее далеко от своих источников — движущихся зарядов, затухая наиболее медленно с расстоянием.

Электромагнитное излучение способно распространяться практически во всех средах. В вакууме (пространстве, свободном от вещества и тел, поглощающих или испускающих электромагнитные волны) электромагнитное излучение распространяется без затуханий на сколь угодно большие расстояния, но в ряде случаев достаточно хорошо распространяется и в пространстве, заполненном веществом (несколько изменяя при этом своё поведение).

Содержание

Характеристики электромагнитного излучения [ править | править код ]

Основными характеристиками электромагнитного излучения принято считать частоту, длину волны и поляризацию.

Длина волны прямо связана с частотой через (групповую) скорость распространения излучения. Групповая скорость распространения электромагнитного излучения в вакууме равна скорости света, в других средах эта скорость меньше. Фазовая скорость электромагнитного излучения в вакууме также равна скорости света, в различных средах она может быть как меньше, так и больше скорости света [2] .

Описанием свойств и параметров электромагнитного излучения в целом занимается электродинамика, хотя свойствами излучения отдельных областей спектра занимаются определённые более специализированные разделы физики (отчасти так сложилось исторически, отчасти обусловлено существенной конкретной спецификой, особенно в отношении взаимодействия излучения разных диапазонов с веществом, отчасти также спецификой прикладных задач). К таким более специализированным разделам относятся оптика (и её разделы) и радиофизика. Жёстким электромагнитным излучением коротковолнового конца спектра занимается физика высоких энергий [3] ; в соответствии с современными представлениями (см. Стандартная модель), при высоких энергиях электродинамика перестаёт быть самостоятельной, объединяясь в одной теории со слабыми взаимодействиями, а затем — при ещё более высоких энергиях — как ожидается — со всеми остальными калибровочными полями.

Существуют различающиеся в деталях и степени общности теории, позволяющие смоделировать и исследовать свойства и проявления электромагнитного излучения. Наиболее фундаментальной [4] из завершённых и проверенных теорий такого рода является квантовая электродинамика, из которой путём тех или иных упрощений можно в принципе получить все перечисленные ниже теории, имеющие широкое применение в своих областях. Для описания относительно низкочастотного электромагнитного излучения в макроскопической области используют, как правило, классическую электродинамику, основанную на уравнениях Максвелла, причём существуют упрощения в прикладных применениях. Для оптического излучения (вплоть до рентгеновского диапазона) применяют оптику (в частности, волновую оптику, когда размеры некоторых частей оптической системы близки к длинам волн; квантовую оптику, когда существенны процессы поглощения, излучения и рассеяния фотонов; геометрическую оптику — предельный случай волновой оптики, когда длиной волны излучения можно пренебречь). Гамма-излучение чаще всего является предметом ядерной физики, с других — медицинских и биологических — позиций изучается воздействие электромагнитного излучения в радиологии. Существует также ряд областей — фундаментальных и прикладных — таких, как астрофизика, фотохимия, биология фотосинтеза и зрительного восприятия, ряд областей спектрального анализа, для которых электромагнитное излучение (чаще всего — определенного диапазона) и его взаимодействие с веществом играют ключевую роль. Все эти области граничат и даже пересекаются с описанными выше разделами физики.

Читайте также:  Носительство антител к гепатиту с

Некоторые особенности электромагнитных волн c точки зрения теории колебаний и понятий электродинамики:

  • наличие трёх взаимно перпендикулярных (в вакууме) векторов: волнового вектора, вектора напряжённости электрического поляE и вектора напряжённости магнитного поляH.
Виды энергии:
Механическая Потенциальная
Кинетическая
‹ ♦ › Внутренняя
Электромагнитная Электрическая
Магнитная
Химическая
Ядерная
G <displaystyle G> Гравитационная
∅ <displaystyle emptyset > Вакуума
Гипотетические:
Тёмная
См.также:Закон сохранения энергии
  • электромагнитные волны — это поперечные волны, в которых вектора напряжённостей электрического и магнитного полей колеблются перпендикулярно направлению распространения волны, но они существенно отличаются от волн на воде и от звука тем, что их можно передать от источника к приёмнику в том числе и через вакуум.

Диапазоны электромагнитного излучения [ править | править код ]

Электромагнитное излучение принято делить по частотным диапазонам (см. таблицу). Между диапазонами нет резких переходов, они иногда перекрываются, а границы между ними условны. Поскольку скорость распространения излучения (в вакууме) постоянна, то частота его колебаний жёстко связана с длиной волны в вакууме.

Название диапазона Длины волн, λ Частоты, f Источники
Радиоволны Сверхдлинные более 10 км менее 30 кГц Атмосферные и магнитосферные явления. Радиосвязь.
Длинные 10 км — 1 км 30 кГц — 300 кГц
Средние 1 км — 100 м 300 кГц — 3 МГц
Короткие 100 м — 10 м 3 МГц — 30 МГц
Ультракороткие 10 м — 0,1 мм 30 МГц — 3000 ГГц [5]
Инфракрасное излучение 1 мм — 780 нм 300 ГГц — 429 ТГц Излучение молекул и атомов при тепловых и электрических воздействиях.
Видимое излучение 780—380 нм 429 ТГц — 750 ТГц
Ультрафиолетовое 380нм — 10нм 7,5⋅10 14 Гц — 3⋅10 16 Гц Излучение атомов под воздействием ускоренных электронов.
Рентгеновские 10 нм — 5 пм 3⋅10 16 Гц — 6⋅10 19 Гц Атомные процессы при воздействии ускоренных заряженных частиц.
Гамма менее 5 пм более 6⋅10 19 Гц Ядерные и космические процессы, радиоактивный распад.

Ультракороткие радиоволны принято разделять на метровые, дециметровые, сантиметровые, миллиметровые и децимиллиметровые волны (гипервысокие частоты, ГВЧ, 300—3000 ГГц) — стандартные диапазоны радиоволн по общепринятой классификации [5] . По другой классификации указанные стандартные диапазоны радиоволн, исключая метровые волны, называют микроволнами или волнами сверхвысоких частот (СВЧ) [6] .

Ионизирующее электромагнитное излучение. К этой группе традиционно относят рентгеновское и гамма-излучение, хотя, строго говоря, ионизировать атомы может и ультрафиолетовое излучение, и даже видимый свет. Границы областей рентгеновского и гамма-излучения могут быть определены лишь весьма условно. Для общей ориентировки можно принять, что энергия рентгеновских квантов лежит в пределах 20 эВ — 0,1 МэВ , а энергия гамма-квантов — больше 0,1 МэВ . В узком смысле гамма-излучение испускается ядром, а рентгеновское — атомной электронной оболочкой при выбивании электрона с низколежащих орбит, хотя эта классификация неприменима к жёсткому излучению, генерируемому без участия атомов и ядер (например, синхротронному или тормозному излучению).

Радиоволны [ править | править код ]

Из-за больших значений λ распространение радиоволн можно рассматривать без учёта атомистического строения среды. Исключение составляют только самые короткие радиоволны, примыкающие к инфракрасному участку спектра. В радиодиапазоне слабо сказываются и квантовые свойства излучения, хотя их всё же приходится учитывать, в частности, при описании квантовых генераторов и усилителей сантиметрового и миллиметрового диапазонов, а также молекулярных стандартов частоты и времени, при охлаждении аппаратуры до температур в несколько кельвинов.

Радиоволны возникают при протекании по проводникам переменного тока соответствующей частоты. И наоборот, проходящая в пространстве электромагнитная волна возбуждает в проводнике соответствующий ей переменный ток. Это свойство используется в радиотехнике при конструировании антенн.

Читайте также:  Как есть тыквенные семечки с кожурой

Естественным источником волн этого диапазона являются грозы. Считается, что они же являются источником стоячих электромагнитных волн Шумана.

Читайте также:

  1. А. Программирование работы гирлянды, работающей в режиме бегущей волны
  2. ВЕКТОРНЫЕ ВОЛНЫ
  3. ВЕКТОРНЫЕ ВОЛНЫ.
  4. Вероятностный смысл волны де Бройля.
  5. Волновой пакет. Видность. Пространственная и временная часть фазы волны.
  6. Волны в двухпроводной и полосковой линиях
  7. Волны в коаксиальном кабеле
  8. Волны в прямоугольном волноводе
  9. Волны Рэлея.
  10. Волны сжатия
  11. Волны, набегающие на подстанции
  12. Волны. Плоские и сферические волны

Существование электромагнитных волн— переменного электромагнитного поля, распространяющегося в пространстве с конечной скоростью,— вытекает из уравнений Максвелла, сформулированных в 1865 г. на основе обобщения эмпирических законов электрических и магнитных явлений.

Рис. 1

Электромагнитное поле распространяется в виде поперечной электромагнитной волны (рис. 1), состоящей из двух совпадающих по фазе волн — электрической (т. е. волны напряженности электрического поля) и магнитной (т. е. волны напряженности магнитного поля), перемещающихся в пространстве со скоростью

,

где ε и μ — относительные диэлектрическая и магнитная проницаемости среды. Распространение электромагнитного поля сопровождается переносом электромагнитной энергии.

Длина λ, период Т, частота ν и скорость и распространения электромагнитной волны связаны между собой очевидным соотношением

Чем чаще следуют друг за другом максимумы электромагнитного поля, т. е. чем больше частота электромагнитной волны, тем большая энергия переносится этой волной. Расчеты показывают, что интенсивность электромагнитной волны, или, что то же, плотность потока электромагнитной энергии, пропорциональна (при одинаковых прочих условиях) квадрату частоты волны.

Источниками электромагнитного поля, или, как говорят, источниками электромагнитного излучения, служат всевозможные переменные токи: переменный ток в проводниках, колебательное движение ионов, электронов и других заряженных частиц, вращение электронов в атоме вокруг ядра и т. п.

Поэтому источником интенсивных электромагнитных волн, способных переносить электромагнитную энергию на значительное расстояние, должен быть переменный ток частоты порядка миллиона герц. Переменные токи столь высокой частоты принято называть электрическими колебаниями. В качестве генератора электрических колебаний и источника электромагнитных волн высокой частоты применяется колебательный контур.

Колебательный контур состоит из конденсатора и катушки самоиндукции (рис. 2, а).

Рис. 2

На рис. 2, а представлен закрытый колебательный контур.

Излучающая способность источника определяется его формой, размерами и частотой колебаний. Чтобы излучение играло заметную роль, необходимо увеличить объем пространства, в котором переменное электромагнитное поле создается. Поэтому для получения электромагнитных волн непригодны закрытые колебательные контуры, так как в них электрическое поле сосредоточено между обкладками конденсатора, а магнитное — внутри катушки индуктивности.

Герц в своих опытах, раздвигая пластины конденсатора (рис. 2, б), совершил переход от закрытого колебательного контура к открытому колебательному контуру (вибратору Герца),представляющему собой два стержня, разделенных искровым промежутком (рис. 2, в). В открытом колебательном контуре переменное электрическое поле заполняет окружающее контур пространство, что существенно повышает интенсивность электромагнитного излучения. Колебания в такой системе поддерживаются за счет источника э. д. с, подключенного к обкладкам конденсатора, а искровой промежуток применяется для того, чтобы увеличить разность потенциалов, до которой первоначально заряжаются обкладки.

Недостатком вибраторов Герца являлось то, что свободные колебания в них быстро затухали и обладали малой мощностью. Для получения незатухающих колебаний необходимо создать автоколебательную систему, которая обеспечивала бы подачу энергии с частотой, равной частоте собственных колебаний контура. Поэтому в 20-х годах нашего столетия перешли к генерированию электромагнитных волн с помощью электронных ламп. Ламповые генераторы позволяют получать колебания заданной (практически любой) мощности и синусоидальной формы.

Электромагнитные волны, обладая широким диапазоном частот (или длин волн λ = c/v, где с — скорость электромагнитных волн в вакууме), отличаются друг от друга по способам их генерации и регистрации, а также по своим свойствам. Поэтому электромагнитные волны делятся на несколько видов: радиоволны, световые волны, рентгеновское и γ-излучения (табл.). Следует отметить, что границы между различными видами электромагнитных волн довольно условны.

Вид излучения Длина волны, м Частота волны, Гц Источник излучения
Радиоволны Световые волны: инфракрасные видимые ультрафиолетовые Рентгеновское излучение γ-Излучение 10 3 −10 -4 5·10 -4 −8·10 -7 8·10 -7 −4·10 -7 4·10 -7 −10 -9 2·10 -9 −6·10 -12 -12 3·10 5 −3·10 12 6·10 11 −3,75·10 14 3,75·10 14 −7,5·10 14 7,5·10 14 −3·10 17 1,5·10 17 −5·10 19 > 5·10 19 Колебательный контур Вибратор Герца Массовый излучатель Ламповый генератор Лампы Лазеры Трубки Рентгена Радиоактивный распад Ядерные процессы Космические процессы

Дата добавления: 2014-01-11 ; Просмотров: 1014 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Ссылка на основную публикацию
Adblock detector